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Spatial correlation effects on seismic response of
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ABSTRACT

The effects that spatial randomness of ground motion may have on seismic
~psponse of large St‘“*UCtEJVE‘S t? earthquak_es are discussed. It is outlined how
-patial randomness_of _thls motion can be incorporated in the analysis. Spatial
zgr*rehtion of seismic ground motion may h_ave important consequences for
-xtensive structures such as long dams, pipelines, large buildings etc.
ysuallys such struc{:urfs are examined using a t\:m-—dimensiona\ finite element
analys1s of 1tS shc? : _HOW@VE"}"} lack of spatial correlation _of the _ground
notion along the longitudinal ax1s ?f_the structure may result in bending and
chear stresses that are very significant. This is demonstrated using the
the horizontal seismic response of a long, concrete gravity dam.
spil-structure interaction 1s accounted for in the analysis.

INTRODUCTION

The performance and safety of earthquake-resisting _structures can be
snhanced by improving the understanding and representation of earthquake
ground motions. One aspect of these motions, relevant for the qna1y31s of
oxtended structures such as tunnels, pipelines, large dams and mu1t1—supp0rteg
long bridges, is spatial variability. This means that the ground motion an
the resulting dynamic loads may not be perfectly coherent (synghron1zed) in
space. This property reduces the total load in the structure in some cas?s
«hile in others it can produce a type of response that remains completely
unforeseen if spatial correlation is not accounted for. Th1s paper ouF11ne?
2 procedure that makes it possible to account for .spatuﬂ corre1at1?n t?\
ground motions and soil-structure interaction, using an example O - i
horizontal response of a large gravity dam. _The paper comp]gments an ear ;id
study by Novak and Suen (1987) which was limited to the vertical response

used a technique different from the one employed here.
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which will be needed, does not feature a singularity at frequency w = 0.

£

The power spectral density by 2kg 1 A5 used in the double serie-
expression for the generated ground motion with the frequency w replaced

w = g(ky,k,) = cr,/kf + kg

;na;.«gmh K;»K, are the wave numbers of non-dispersive waves in the direction:
Z, respectively, and a is the wave phase velocity. Eions

MATHEMATICAL MODEL
The Dam

bciied by N hale EaRAL e R R R o St width), and s

r- . ; . - |
T ;Zb%zttalhvans]atmns perpendicular to

. N1s axis (rocking) are allowed,
The horizontal joint

he EXamp]e th e?Ving the model with
, € dam is assumed to be of

d rectangular canyon.
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Figure 2. Dam displacements

Using the Tumped mass matrix, the governing equations are

[ M 1Y) + [KI(Y) + [K]c(y) = (0)

-

In which the displacement vectors are written as

75 R
W= 00y Uy vy 0T = [0y (3]
(y} =

LUy u, N+1 P1¥s-. wNH]T = [{u) (¥)]' (6)

Ctura] stiffness DE"'((:I masses, M, and mass moments
r 5: ls» condensed with regard to
N€SS matrix can be written as

(7)
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Del‘lﬂting the tOta] St?ffﬁegg matrix
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tress calculati aDsolute motin
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ring zero rotations, 1S

= [u YR 38 e 1 : 1
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m—— —
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i : “
(11)

Recause of the frequency dependence of the c0il stiffness matrix these
squations are solved Dy Fast Fourier Transform in the fregquency domain
(complex response analysis), transforming first the simulated ground motions
generated digitally. For each harmonic component further condensation with

regard to (¥} is implemented to save on computing time.

EXAMPLE

To illustrate the type of response the qbove procedure yields, a long,

concrete gravity dam with a cross-section <imilar to that of the Koyna Dam 1n
+h a crest length O 853

western India is analyzed. The dam is 103 m high Wi

m. Its cross-section, assumed to be constant,}is <hown in Fig. 3. :
specific mass and Young's nodulus are 2300 kg/m and 30000 MPa, respectively.
| basalt with a shear wave

The Poisson’s ratio is 0.2. The foundation rock 1s Further
velocity of 1218 m/s (4000 ft/s) and Poisson’s ratio equal 1o 0.3. t\i“c;n 4
data on this dam are given in Novak (1987). The 59"701““5-1“‘°and Eha
generated by Eq. 1 with w, = 0.1 w,, & R 1

- ¢, = 0.6, o = ‘
- ' iV ten equal

envelope function shown In Fig. f The dam 15 divided into ten E€Q

elements.

The ground motions are simul

With the dam 1ying along the axis Z and the v%ahvee seimuhted qround motions are

The duration of the ground motions is 19 S |
shown in Fig. 5. Thge maximum ground scceleration 15 0.139.
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